If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x-1^2)+2x(1-x)+2=x-7(1-x)x
We move all terms to the left:
(3x-1^2)+2x(1-x)+2-(x-7(1-x)x)=0
We add all the numbers together, and all the variables
(3x-1^2)+2x(-1x+1)-(x-7(-1x+1)x)+2=0
We multiply parentheses
-2x^2+(3x-1^2)+2x-(x-7(-1x+1)x)+2=0
We get rid of parentheses
-2x^2+3x+2x-(x-7(-1x+1)x)+2-1^2=0
We calculate terms in parentheses: -(x-7(-1x+1)x), so:We add all the numbers together, and all the variables
x-7(-1x+1)x
We multiply parentheses
7x^2+x-7x
We add all the numbers together, and all the variables
7x^2-6x
Back to the equation:
-(7x^2-6x)
-2x^2+5x-(7x^2-6x)+1=0
We get rid of parentheses
-2x^2-7x^2+5x+6x+1=0
We add all the numbers together, and all the variables
-9x^2+11x+1=0
a = -9; b = 11; c = +1;
Δ = b2-4ac
Δ = 112-4·(-9)·1
Δ = 157
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{157}}{2*-9}=\frac{-11-\sqrt{157}}{-18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{157}}{2*-9}=\frac{-11+\sqrt{157}}{-18} $
| 6=20x+10 | | 2(7x+10=34 | | 40=3(5x+3)+1 | | 2(-3a+5=-4(a+4) | | 2(2x-5)=-18 | | 11=17-a | | 100/10=x/5000 | | c-5/2=2 | | 1/2x=42 | | -1/4-1/2x=19/4 | | -5=2(3x+4)-1 | | 4(3x+6)=144 | | 10x=-8x+36 | | 15g-11g-2g=18 | | 2x+9=2(4x-3)+3 | | 20/1=x/2 | | 2d-12-d=9d+53+d | | 5x−6=3x+10 | | x+10-4x=9 | | 5x-3+6=7x-3 | | 3x-29=2(4x+5)-4 | | 15g–11g–2g=18 | | 0.4x+1.4=0.7x-13 | | 14-3(x-2)=-1 | | 3(2+6x)=114 | | 16/d=-4 | | 14-3(x-2=-1 | | 16/d= -4 | | y=2(y+2) | | 4(5+7x)=272 | | 5=x=-12 | | 16d= -4 |